Is Multi-model Feature Matching Better for Endoscopic Motion Estimation?
نویسندگان
چکیده
Camera motion estimation is a standard yet critical step to endoscopic visualization. It is affected by the variation of locations and correspondences of features detected in 2D images. Feature detectors and descriptors vary, though one of the most widely used remains SIFT. Practitioners usually also adopt its feature matching strategy, which defines inliers as the feature pairs subjecting to a global affine transformation. However, for endoscopic videos, we are curious if it is more suitable to cluster features into multiple groups. We can still enforce the same transformation as in SIFT within each group. Such a multi-model idea has been recently examined in the Multi-Affine work, which outperforms Lowe's SIFT in terms of re-projection error on minimally invasive endoscopic images with manually labelled ground-truth matches of SIFT features. Since their difference lies in matching, the accuracy gain of estimated motion is attributed to the holistic Multi-Affine feature matching algorithm. But, more concretely, the matching criterion and point searching can be the same as those built in SIFT. We argue that the real variation is only the motion model verification. We either enforce a single global motion model or employ a group of multiple local ones. In this paper, we investigate how sensitive the estimated motion is affected by the number of motion models assumed in feature matching. While the sensitivity can be analytically evaluated, we present an empirical analysis in a leaving-one-out cross validation setting without requiring labels of ground-truth matches. Then, the sensitivity is characterized by the variance of a sequence of motion estimates. We present a series of quantitative comparison such as accuracy and variance between Multi-Affine motion models and the global affine model.
منابع مشابه
Pseudo Zernike Moment-based Multi-frame Super Resolution
The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...
متن کاملQuantitative Endoscopy: Uncertainty Analysis of Motion Estimation with Robust Feature Matching
Feature matching based 3D reconstruction is a standard technique in 3D Computer Vision. An natural extension is to reconstruct dynamic surfaces from videos, such as reconstructing sinus surfaces from endoscopic videos. However, since the camera is moving and the sinus surfaces are normally deformable and non-planar, the feature matching is usually unsatisfactory. We will employ a state-of-the-a...
متن کاملAdaptive search area for fast motion estimation
In this paper a new method for determining the search area for motion estimation algorithm based on block matching is suggested. In the proposed method the search area is adaptively found for each block of a frame. This search area is similar to that of the full search (FS) algorithm but smaller for most blocks of a frame. Therefore, the proposed algorithm is analogous to FS in terms of reg...
متن کاملNew adaptive interpolation schemes for efficient meshbased motion estimation
Motion estimation and compensation is an essential part of existing video coding systems. The mesh-based motion estimation (MME) produces smoother motion field, better subjective quality (free from blocking artifacts), and higher peak signal-to-noise ratio (PSNR) in many cases, especially at low bitrate video communications, compared to the conventional block matching algorithm (BMA). Howev...
متن کاملSpectral-Differential Feature Matching and Clustering for Multi-body Motion Estimation
System for estimating the motion of independently moving objects observed by a moving camera is presented. It consists of feature matching and multi-body motion estimating modules. Novel set of invariant features is proposed on the base of phase spectrum differentiation without information loss. Clustering the feature points and estimating the transformation model for each cluster are guided by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer-assisted and robotic endoscopy : first International Workshop, CARE 2014, held in conjunction with MICCAI 2014, Boston, MA, USA, September 18, 2014 : revised selected papers. CARE (Workshop)
دوره 8899 شماره
صفحات -
تاریخ انتشار 2014